Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or goes beyond human cognitive abilities throughout a broad range of cognitive jobs. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably exceeds human cognitive abilities. AGI is thought about one of the meanings of strong AI.
Creating AGI is a main goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research and development tasks across 37 nations. [4]
The timeline for attaining AGI stays a topic of ongoing argument among researchers and experts. Since 2023, some argue that it might be possible in years or decades; others preserve it might take a century or longer; a minority believe it may never ever be attained; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed issues about the quick progress towards AGI, suggesting it could be accomplished faster than many expect. [7]
There is debate on the specific definition of AGI and regarding whether modern large language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a typical subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have actually mentioned that alleviating the threat of human termination presented by AGI should be an international concern. [14] [15] Others discover the advancement of AGI to be too remote to present such a danger. [16] [17]
Terminology
AGI is also understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience sentience or consciousness. [a] On the other hand, weak AI (or narrow AI) is able to solve one specific issue but lacks general cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as people. [a]
Related principles consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical type of AGI that is much more usually smart than human beings, [23] while the notion of transformative AI relates to AI having a large influence on society, for instance, comparable to the agricultural or industrial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, proficient, professional, virtuoso, and superhuman. For example, a skilled AGI is defined as an AI that exceeds 50% of skilled adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is likewise specified but with a threshold of 100%. They think about large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other popular definitions, and some scientists disagree with the more popular techniques. [b]
Intelligence qualities
Researchers normally hold that intelligence is needed to do all of the following: [27]
factor, use method, solve puzzles, and make judgments under uncertainty
represent knowledge, including good sense understanding
plan
discover
- communicate in natural language
- if necessary, integrate these skills in conclusion of any given goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) think about additional traits such as imagination (the capability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that display much of these abilities exist (e.g. see computational creativity, automated reasoning, choice assistance system, robot, evolutionary calculation, smart agent). There is debate about whether modern-day AI systems possess them to an adequate degree.
Physical qualities
Other abilities are considered desirable in smart systems, as they might affect intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. relocation and control objects, modification area to check out, and so on).
This includes the capability to identify and respond to threat. [31]
Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and manipulate things, modification location to explore, etc) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) may already be or end up being AGI. Even from a less optimistic point of view on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is adequate, offered it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and hence does not require a capability for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to confirm human-level AGI have actually been thought about, including: [33] [34]
The idea of the test is that the machine needs to attempt and pretend to be a male, by addressing questions put to it, chessdatabase.science and it will just pass if the pretence is reasonably convincing. A substantial part of a jury, who must not be expert about devices, should be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would need to execute AGI, because the service is beyond the abilities of a purpose-specific algorithm. [47]
There are many problems that have actually been conjectured to require basic intelligence to fix as well as people. Examples include computer vision, natural language understanding, and dealing with unforeseen circumstances while resolving any real-world issue. [48] Even a particular job like translation requires a maker to read and compose in both languages, follow the author's argument (factor), understand the context (understanding), and consistently recreate the author's initial intent (social intelligence). All of these issues need to be resolved concurrently in order to reach human-level device performance.
However, much of these tasks can now be carried out by modern big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on many benchmarks for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were convinced that synthetic basic intelligence was possible and that it would exist in simply a few decades. [51] AI leader Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a man can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could create by the year 2001. AI leader Marvin Minsky was a consultant [53] on the project of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the issue of producing 'artificial intelligence' will considerably be fixed". [54]
Several classical AI projects, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it became obvious that researchers had grossly undervalued the problem of the job. Funding agencies ended up being doubtful of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a table talk". [58] In action to this and the success of expert systems, both market and federal government pumped money into the field. [56] [59] However, self-confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in twenty years, AI researchers who anticipated the imminent accomplishment of AGI had been misinterpreted. By the 1990s, AI scientists had a track record for making vain guarantees. They became reluctant to make predictions at all [d] and prevented mention of "human level" synthetic intelligence for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained commercial success and academic respectability by concentrating on specific sub-problems where AI can produce proven outcomes and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation market, and research in this vein is greatly funded in both academia and market. Since 2018 [update], advancement in this field was considered an emerging trend, and a fully grown stage was anticipated to be reached in more than 10 years. [64]
At the turn of the century, many traditional AI scientists [65] hoped that strong AI could be established by integrating programs that resolve various sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to artificial intelligence will one day fulfill the standard top-down path more than half method, ready to provide the real-world proficiency and the commonsense knowledge that has been so frustratingly evasive in thinking programs. Fully smart machines will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is actually only one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this path (or vice versa) - nor is it clear why we ought to even try to reach such a level, considering that it appears arriving would just amount to uprooting our symbols from their intrinsic meanings (consequently simply minimizing ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial general intelligence research
The term "artificial general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the ability to please goals in a wide range of environments". [68] This kind of AGI, identified by the capability to maximise a mathematical definition of intelligence instead of display human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of visitor speakers.
As of 2023 [upgrade], a small number of computer researchers are active in AGI research, and many contribute to a series of AGI conferences. However, significantly more scientists have an interest in open-ended learning, [76] [77] which is the concept of permitting AI to constantly find out and innovate like humans do.
Feasibility
Since 2023, the advancement and prospective accomplishment of AGI stays a topic of extreme dispute within the AI neighborhood. While traditional agreement held that AGI was a distant objective, recent developments have actually led some scientists and industry figures to declare that early types of AGI may currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This prediction failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would need "unforeseeable and essentially unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern computing and human-level expert system is as large as the gulf in between current space flight and practical faster-than-light spaceflight. [80]
A further obstacle is the absence of clearness in defining what intelligence entails. Does it require consciousness? Must it show the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence require explicitly replicating the brain and its particular professors? Does it need emotions? [81]
Most AI scientists believe strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, but that today level of development is such that a date can not properly be forecasted. [84] AI professionals' views on the feasibility of AGI wax and subside. Four polls performed in 2012 and 2013 suggested that the average quote among professionals for when they would be 50% positive AGI would arrive was 2040 to 2050, depending on the poll, with the mean being 2081. Of the specialists, 16.5% answered with "never ever" when asked the exact same question however with a 90% self-confidence instead. [85] [86] Further present AGI progress factors to consider can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong bias towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists published a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we believe that it could reasonably be considered as an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of basic intelligence has actually currently been achieved with frontier models. They composed that reluctance to this view originates from 4 main factors: a "healthy skepticism about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]
2023 likewise marked the introduction of big multimodal designs (large language models capable of processing or creating several methods such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time thinking before they respond". According to Mira Murati, this capability to think before responding represents a new, extra paradigm. It improves model outputs by spending more computing power when producing the response, whereas the design scaling paradigm improves outputs by increasing the design size, training data and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had actually accomplished AGI, specifying, "In my viewpoint, we have currently accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than the majority of human beings at the majority of tasks." He also dealt with criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their learning procedure to the scientific approach of observing, assuming, and validating. These declarations have actually triggered dispute, as they rely on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show impressive adaptability, they might not completely meet this standard. Notably, Kazemi's comments came quickly after OpenAI got rid of "AGI" from the terms of its partnership with Microsoft, triggering speculation about the business's strategic objectives. [95]
Timescales
Progress in synthetic intelligence has traditionally gone through durations of rapid progress separated by periods when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software application or both to create space for further progress. [82] [98] [99] For example, the computer system hardware available in the twentieth century was not enough to execute deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that estimates of the time needed before a really versatile AGI is developed vary from 10 years to over a century. Since 2007 [upgrade], the agreement in the AGI research study community appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually given a vast array of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions discovered a bias towards anticipating that the beginning of AGI would occur within 16-26 years for modern-day and historical forecasts alike. That paper has been slammed for how it classified opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the traditional approach used a weighted sum of ratings from various pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the current deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly available and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in very first grade. A grownup comes to about 100 on average. Similar tests were performed in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in carrying out many diverse jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to abide by their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, competing that it displayed more general intelligence than previous AI designs and demonstrated human-level performance in tasks covering numerous domains, such as mathematics, coding, and law. This research study sparked a dispute on whether GPT-4 might be thought about an early, insufficient variation of artificial general intelligence, highlighting the requirement for additional expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The idea that this things might really get smarter than individuals - a couple of people thought that, [...] But the majority of people thought it was method off. And I thought it was method off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The progress in the last few years has been quite amazing", and that he sees no reason it would slow down, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would can passing any test at least along with human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI worker, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is thought about the most appealing path to AGI, [116] [117] entire brain emulation can serve as an alternative method. With entire brain simulation, a brain design is built by scanning and mapping a biological brain in information, and then copying and replicating it on a computer system or another computational gadget. The simulation design need to be adequately devoted to the original, so that it acts in practically the very same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been gone over in synthetic intelligence research [103] as an approach to strong AI. Neuroimaging technologies that might provide the needed detailed understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will become readily available on a similar timescale to the computing power needed to imitate it.
Early estimates
For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be required, given the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by adulthood. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at numerous price quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a measure used to rate current supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was accomplished in 2022.) He used this figure to forecast the required hardware would be offered sometime between 2015 and 2025, if the rapid development in computer system power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established a particularly comprehensive and openly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic nerve cell design assumed by Kurzweil and used in many existing synthetic neural network applications is simple compared to biological neurons. A brain simulation would likely need to capture the comprehensive cellular behaviour of biological neurons, presently understood just in broad outline. The overhead presented by full modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's price quote. In addition, the price quotes do not represent glial cells, which are understood to play a function in cognitive processes. [125]
An essential criticism of the simulated brain method obtains from embodied cognition theory which asserts that human embodiment is a necessary aspect of human intelligence and is needed to ground significance. [126] [127] If this theory is correct, any fully practical brain model will require to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, but it is unknown whether this would be sufficient.
Philosophical viewpoint
"Strong AI" as specified in philosophy
In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and awareness.
The first one he called "strong" since it makes a more powerful statement: it presumes something unique has actually happened to the maker that surpasses those capabilities that we can evaluate. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" maker, but the latter would also have subjective mindful experience. This use is also common in academic AI research study and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is needed for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most expert system scientists the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it actually has mind - certainly, there would be no way to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have various significances, and some aspects play significant roles in science fiction and the ethics of artificial intelligence:
Sentience (or "sensational awareness"): The ability to "feel" perceptions or emotions subjectively, as opposed to the capability to reason about perceptions. Some theorists, such as David Chalmers, utilize the term "consciousness" to refer solely to sensational awareness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience arises is known as the hard issue of awareness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be conscious. If we are not mindful, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually accomplished life, though this claim was widely contested by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, especially to be purposely familiar with one's own thoughts. This is opposed to just being the "subject of one's thought"-an os or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the exact same way it represents whatever else)-however this is not what individuals normally imply when they use the term "self-awareness". [g]
These qualities have an ethical measurement. AI sentience would generate concerns of welfare and legal defense, similarly to animals. [136] Other elements of awareness associated to cognitive capabilities are also relevant to the principle of AI rights. [137] Determining how to integrate advanced AI with existing legal and social structures is an emerging issue. [138]
Benefits
AGI could have a wide range of applications. If oriented towards such objectives, AGI might help alleviate various issues on the planet such as appetite, poverty and health problems. [139]
AGI could improve efficiency and effectiveness in a lot of jobs. For example, in public health, AGI could speed up medical research study, significantly against cancer. [140] It could take care of the elderly, [141] and equalize access to fast, high-quality medical diagnostics. It could use enjoyable, low-cost and tailored education. [141] The need to work to subsist could become obsolete if the wealth produced is effectively redistributed. [141] [142] This likewise raises the concern of the location of people in a drastically automated society.
AGI might likewise help to make reasonable choices, and to prepare for and prevent disasters. It could also help to gain the advantages of potentially disastrous innovations such as nanotechnology or environment engineering, while avoiding the associated dangers. [143] If an AGI's primary goal is to prevent existential catastrophes such as human termination (which might be challenging if the Vulnerable World Hypothesis turns out to be real), [144] it could take procedures to considerably decrease the threats [143] while minimizing the effect of these procedures on our lifestyle.
Risks
Existential threats
AGI might represent numerous kinds of existential danger, which are risks that threaten "the premature termination of Earth-originating smart life or the permanent and drastic destruction of its potential for advancement". [145] The danger of human extinction from AGI has been the topic of numerous debates, but there is likewise the possibility that the advancement of AGI would cause a permanently problematic future. Notably, it could be utilized to spread and protect the set of values of whoever establishes it. If humanity still has moral blind spots comparable to slavery in the past, AGI may irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI might assist in mass surveillance and indoctrination, which might be utilized to develop a steady repressive around the world totalitarian routine. [147] [148] There is also a danger for the makers themselves. If makers that are sentient or otherwise worthwhile of ethical factor to consider are mass developed in the future, taking part in a civilizational course that forever ignores their well-being and interests might be an existential catastrophe. [149] [150] Considering just how much AGI could enhance mankind's future and help in reducing other existential threats, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential danger for human beings, and that this threat needs more attention, is controversial however has actually been endorsed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, facing possible futures of enormous benefits and risks, the specialists are surely doing whatever possible to make sure the best outcome, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll show up in a couple of years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The possible fate of mankind has actually sometimes been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence enabled humankind to dominate gorillas, which are now vulnerable in manner ins which they could not have actually anticipated. As a result, the gorilla has become a threatened types, not out of malice, but simply as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humankind which we need to take care not to anthropomorphize them and interpret their intents as we would for people. He said that individuals will not be "wise adequate to develop super-intelligent devices, yet unbelievably silly to the point of offering it moronic goals without any safeguards". [155] On the other side, the concept of critical convergence recommends that almost whatever their goals, smart agents will have factors to attempt to make it through and obtain more power as intermediary steps to accomplishing these objectives. Which this does not require having feelings. [156]
Many scholars who are worried about existential danger supporter for more research into solving the "control issue" to respond to the concern: what kinds of safeguards, algorithms, or architectures can programmers carry out to increase the probability that their recursively-improving AI would continue to act in a friendly, rather than devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might lead to a race to the bottom of security preventative measures in order to launch products before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can present existential risk likewise has detractors. Skeptics usually state that AGI is unlikely in the short-term, or that issues about AGI distract from other concerns related to existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many individuals beyond the innovation industry, existing chatbots and LLMs are currently viewed as though they were AGI, resulting in additional misunderstanding and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some scientists believe that the interaction projects on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, provided a joint declaration asserting that "Mitigating the danger of termination from AI ought to be an international concern together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of employees may see at least 50% of their jobs affected". [166] [167] They consider workplace workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, ability to make choices, to user interface with other computer system tools, however also to manage robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be redistributed: [142]
Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or many people can wind up badly poor if the machine-owners effectively lobby against wealth redistribution. So far, the trend appears to be toward the 2nd option, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need federal governments to adopt a universal basic income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI effect AI safety - Research location on making AI safe and advantageous AI alignment - AI conformance to the intended objective A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of synthetic intelligence to play various games Generative expert system - AI system capable of creating content in response to triggers Human Brain Project - Scientific research job Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made machines. Moravec's paradox. Multi-task learning - Solving several device learning tasks at the same time. Neural scaling law - Statistical law in machine learning. Outline of expert system - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or form of synthetic intelligence. Transfer knowing - Machine knowing technique. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially developed and optimized for artificial intelligence. Weak expert system - Form of artificial intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the short article Chinese space. ^ AI founder John McCarthy writes: "we can not yet characterize in general what type of computational procedures we desire to call intelligent. " [26] (For a conversation of some definitions of intelligence used by expert system researchers, see philosophy of synthetic intelligence.). ^ The Lighthill report specifically slammed AI's "grandiose goals" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became identified to money only "mission-oriented direct research study, instead of fundamental undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the rest of the workers in AI if the innovators of brand-new general formalisms would express their hopes in a more secured kind than has actually in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI book: "The assertion that devices could perhaps act wisely (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so are in fact thinking (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that artificial basic intelligence benefits all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is creating synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020. ^ a b c "AI timelines: What do experts in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton gives up Google and cautions of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine risk is not AI itself however the way we deploy it. ^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential dangers to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last innovation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI need to be a global priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of risk of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in general ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the complete series of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everybody to make certain that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent characteristics is based upon the topics covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of difficult examinations both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers prevented the term artificial intelligence for fear of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite progress in device intelligence, artificial general intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of skilled viewpoint. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone in between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a middle ground between narrow and general AI. ^ Quach, Katyanna. "A developer constructed an AI chatbot utilizing GPT-3 that helped a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, from playing games to controlling robotics", TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could equal human intelligence in 'just a couple of years,' states CEO of Google's primary A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in present research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard posed however expert system can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI extinction threat". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect potential of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their tasks affected by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic earnings because 'in the future, manual labor will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer programs that can resolve issues and attain objectives worldwide in addition to humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, recovered 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system easy adequate to be understandable will not be complicated enough to act smartly, while any system complicated enough to act wisely will be too complicated to comprehend." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic stupid. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, factor and function originate from acting in the world and experiencing the repercussions. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who intend to get rich from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't depend on governments driven by project financing contributions [from tech business] to push back.' ... Marcus information the needs that citizens must make of their federal governments and the tech business. They include transparency on how AI systems work; settlement for individuals if their information [are] utilized to train LLMs (large language design) s and the right to consent to this usage; and the capability to hold tech business liable for the damages they trigger by removing Section 230, enforcing money penalites, and passing more stringent product liability laws ... Marcus likewise recommends ... that a new, AI-specific federal company, similar to the FDA, the FCC, or the FTC, may supply the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... suggests ... develop [ing] an expert licensing routine for engineers that would operate in a similar way to medical licenses, malpractice suits, and the Hippocratic oath in medication. 'What if, like doctors,' she asks ..., 'AI engineers also vowed to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually puzzled human beings for years, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has actually revealed that although NLP (natural-language processing) designs can extraordinary feats, their abilities are quite restricted by the amount of context they get. This [...] might cause [troubles] for researchers who wish to use them to do things such as examine ancient languages. Sometimes, there are few historical records on long-gone civilizations to act as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to create fake videos equivalent from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean realistic videos produced utilizing expert system that in fact deceive individuals, then they hardly exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, running in our media as counterfeited proof. Their role much better looks like that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning designs utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic general intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to ignore inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require real humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed unable to factor rationally and attempted to rely on its huge database of ... realities originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but undependable. Rules-based systems can not deal with scenarios their developers did not anticipate. Learning systems are restricted by the information on which they were trained. AI failures have actually currently caused catastrophe. Advanced auto-pilot features in vehicles, although they perform well in some situations, have driven vehicles without cautioning into trucks, concrete barriers, and parked cars and trucks. In the wrong circumstance, AI systems go from supersmart to superdumb in an immediate. When an opponent is trying to control and hack an AI system, hb9lc.org the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.