Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Support
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
A
ashcloud
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Beulah Murry
  • ashcloud
  • Issues
  • #1

Closed
Open
Opened Apr 04, 2025 by Beulah Murry@beulah14531208
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with support knowing (RL) to improve thinking ability. DeepSeek-R1 attains results on par with o1 design on numerous standards, consisting of MATH-500 and SWE-bench.

DeepSeek-R1 is based on DeepSeek-V3, a mixture of professionals (MoE) design just recently open-sourced by DeepSeek. This base design is fine-tuned using Group Relative Policy Optimization (GRPO), a reasoning-oriented variant of RL. The research study group likewise carried out understanding distillation from DeepSeek-R1 to open-source Qwen and Llama designs and launched numerous variations of each; these designs outshine larger models, consisting of GPT-4, on math and coding benchmarks.

[DeepSeek-R1 is] the initial step towards enhancing language model reasoning capabilities utilizing pure reinforcement knowing (RL). Our goal is to explore the potential of LLMs to establish reasoning capabilities without any monitored information, concentrating on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a vast array of jobs, including creative writing, basic question answering, editing, summarization, wavedream.wiki and more. Additionally, DeepSeek-R1 demonstrates outstanding performance on jobs requiring long-context understanding, considerably outshining DeepSeek-V3 on long-context benchmarks.

To develop the model, DeepSeek started with DeepSeek-V3 as a base. They first tried fine-tuning it only with RL, and with no supervised fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have likewise launched. This model displays strong thinking efficiency, however" effective thinking habits, it deals with several problems. For example, DeepSeek-R1-Zero battles with difficulties like bad readability and language blending."

To resolve this, the group utilized a brief phase of SFT to prevent the "cold start" issue of RL. They gathered several thousand examples of chain-of-thought reasoning to use in SFT of DeepSeek-V3 before running RL. After the RL process converged, they then gathered more SFT data utilizing rejection tasting, resulting in a dataset of 800k samples. This dataset was used for additional fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek examined their design on a range of reasoning, math, and coding criteria and compared it to other designs, consisting of Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outshined all of them on numerous of the standards, consisting of AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a couple of days of its release, the LMArena announced that DeepSeek-R1 was ranked # 3 total in the arena and # 1 in coding and math. It was also connected for # 1 with o1 in "Hard Prompt with Style Control" category.

Django structure co-creator Simon Willison wrote about his experiments with among the DeepSeek distilled Llama designs on his blog site:

Each action starts with a ... pseudo-XML tag containing the chain of thought used to assist produce the response. [Given the timely] "a joke about a pelican and a walrus who run a tea space together" ... It then believed for 20 paragraphs before outputting the joke! ... [T] he joke is terrible. But the procedure of arriving was such an intriguing insight into how these brand-new models work.

Andrew Ng's newsletter The Batch discussed DeepSeek-R1:

DeepSeek is rapidly emerging as a strong contractor of open designs. Not just are these models terrific entertainers, surgiteams.com however their license permits use of their outputs for distillation, potentially pressing forward the cutting-edge for language models (and multimodal designs) of all sizes.

The DeepSeek-R1 models are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This content remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering

  • Generative AI
  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Getting Started with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to try out cutting-edge innovations? You can start constructing intelligent apps with free Azure app, information, and AI services to reduce in advance expenses. Learn More.

    How could we enhance? Take the InfoQ reader survey

    Each year, we look for feedback from our readers to assist us enhance InfoQ. Would you mind costs 2 minutes to share your feedback in our short study? Your feedback will straight assist us continuously evolve how we support you. The InfoQ Team Take the study

    Related Content

    The InfoQ Newsletter

    A round-up of recently's content on InfoQ sent every Tuesday. Join a neighborhood of over 250,000 senior developers.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: beulah14531208/ashcloud#1