DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model
DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with reinforcement knowing (RL) to enhance reasoning capability. DeepSeek-R1 attains outcomes on par with OpenAI's o1 design on several standards, including MATH-500 and SWE-bench.
DeepSeek-R1 is based on DeepSeek-V3, a mix of specialists (MoE) model recently open-sourced by DeepSeek. This base model is fine-tuned utilizing Group Relative Policy Optimization (GRPO), a reasoning-oriented variant of RL. The research group also performed knowledge distillation from DeepSeek-R1 to open-source Qwen and Llama models and released a number of variations of each; these models surpass larger designs, including GPT-4, on math and coding benchmarks.
[DeepSeek-R1 is] the primary step towards enhancing language design thinking capabilities using pure reinforcement learning (RL). Our goal is to check out the capacity of LLMs to develop reasoning abilities with no monitored information, focusing on their self-evolution through a pure RL process...DeepSeek-R1 ... master a large range of tasks, consisting of creative writing, basic concern answering, editing, summarization, and raovatonline.org more. Additionally, DeepSeek-R1 shows exceptional efficiency on tasks needing long-context understanding, considerably outshining DeepSeek-V3 on long-context standards.
To establish the design, DeepSeek began with DeepSeek-V3 as a base. They first attempted fine-tuning it just with RL, and without any monitored fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have actually also launched. This design exhibits strong reasoning performance, but" powerful thinking habits, it deals with several issues. For example, DeepSeek-R1-Zero struggles with challenges like bad readability and language mixing."
To address this, the team used a short stage of SFT to prevent the "cold start" issue of RL. They gathered a number of thousand examples of chain-of-thought reasoning to use in SFT of DeepSeek-V3 before running RL. After the RL process assembled, they then collected more SFT data using rejection tasting, leading to a dataset of 800k samples. This dataset was used for further fine-tuning and to produce the distilled designs from Llama and Qwen.
DeepSeek examined their design on a range of thinking, mathematics, and coding benchmarks and compared it to other models, consisting of Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 surpassed all of them on several of the standards, of AIME 2024 and MATH-500.
DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report
Within a few days of its release, the LMArena announced that DeepSeek-R1 was ranked # 3 total in the arena and # 1 in coding and mathematics. It was also tied for # 1 with o1 in "Hard Prompt with Style Control" classification.
Django framework co-creator Simon Willison blogged about his explores among the DeepSeek distilled Llama designs on his blog:
Each response starts with a ... pseudo-XML tag containing the chain of thought utilized to assist generate the action. [Given the prompt] "a joke about a pelican and a walrus who run a tea room together" ... It then thought for 20 paragraphs before outputting the joke! ... [T] he joke is awful. But the process of arriving was such a fascinating insight into how these new designs work.
Andrew Ng's newsletter The Batch blogged about DeepSeek-R1:
DeepSeek is rapidly becoming a strong home builder of open models. Not only are these designs great entertainers, but their license permits use of their outputs for distillation, potentially pushing forward the cutting-edge for language designs (and multimodal models) of all sizes.
The DeepSeek-R1 models are available on HuggingFace.
About the Author
Anthony Alford
Rate this Article
This content remains in the AI, ML & Data Engineering topic
Related Topics:
- AI, ML & Data Engineering
- Generative AI
- Large language models
- Related Editorial
Related Sponsored Content
- [eBook] Getting Started with Azure Kubernetes Service
Related Sponsor
Free services for AI apps. Are you all set to explore advanced innovations? You can begin developing smart apps with free Azure app, data, and AI services to minimize upfront costs. Find out more.
How could we improve? Take the InfoQ reader survey
Each year, we seek feedback from our readers to help us improve InfoQ. Would you mind spending 2 minutes to share your feedback in our short study? Your feedback will straight help us continuously progress how we support you. The InfoQ Team Take the study
Related Content
The InfoQ Newsletter
A round-up of last week's content on InfoQ sent out every Tuesday. Join a neighborhood of over 250,000 senior designers.